Search results for "Low-rank approximation"

showing 2 items of 2 documents

LOW-RANK APPROXIMATION BASED NON-NEGATIVE MULTI-WAY ARRAY DECOMPOSITION ON EVENT-RELATED POTENTIALS

2014

Non-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation of ERPs by higher-order tensors are usually large-scale, which prevents the popularity of most tensor factorization algorithms. To overcome this issue, we introduce a non-negative canonical polyadic decomposition (NCPD) based on low-rank approximation (LRA) and hierarchical alternating least square (HALS) techniques. We applied NCPD (LRAHALS and benchmark HALS) and CPD to extract multi-domain features of a visual ERP. The features and components extracted by LRAHALS NCP…

AdultMaleComputer Networks and CommunicationsEmotionsLow-rank approximationEmotional processingEvent-related potentialDecomposition (computer science)Feature (machine learning)HumansRepresentation (mathematics)ta515Mathematicsta113Depressionbusiness.industryGroup (mathematics)ElectroencephalographyPattern recognitionGeneral MedicineMiddle AgedFacial ExpressionAlgebraData Interpretation StatisticalBenchmark (computing)Evoked Potentials VisualFemaleArtificial intelligencebusinessInternational Journal of Neural Systems
researchProduct

Low-rank approximation based non-negative multi-way array decomposition on event-related potentials

2014

Non-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation of ERPs by higher-order tensors are usually large-scale, which prevents the popularity of most tensor factorization algorithms. To overcome this issue, we introduce a non-negative canonical polyadic decomposition (NCPD) based on low-rank approximation (LRA) and hierarchical alternating least square (HALS) techniques. We applied NCPD (LRAHALS and benchmark HALS) and CPD to extract multi-domain features of a visual ERP. The features and components extracted by LRAHALS NCPD…

low-rank approximationEvent-related potentialtensor decompositionnon-negative tensor factorizationmulti-domain featurenon-negative canonical polyadic decomposition
researchProduct